23 research outputs found

    Hydrological extremes in urban environments: impact on water quality

    Get PDF
    Water quality is deteriorating worldwide due to the combined pressures of increasing urbanization and more frequent and severe extreme events. This thesis looks specifically at water temperature and dissolved organic matter (DOM), which despite being master variables of river water quality are not well understood in urban rivers. This thesis aims to increase understanding of how extreme events and urbanization combine to change the dominant processes for water temperature and DOM dynamics. Resultantly research was conducted in a range of headwater streams within Birmingham, UK from June 2016 to September 2018. Research gaps on the effects of urbanization and extreme events on water temperature and DOM were identified and four research themes were described. Firstly, the effects of precipitation on water temperature surges at 11 sites in an urban catchment were investigated, and the choice of precipitation dataset on the results evaluated. Secondly, the effects of extreme high and low flows on river temperature were analyzed for 27 sites in 3 catchments and the influence of land use evaluated. Thirdly, the impacts of shading and water temperature on photodegradation and biodegradation rates of urban DOM were studied. Fourthly, in-situ a fluorometer was used to investigate DOM response to storm events, and the influence of hydrometeorological and land use predictors were investigated. The primary findings were 1) High intensity precipitation events cause water temperature surges in urban catchments, while high temporal and spatial resolution datasets are required to capture this effect, 2) Water temperature anomalies are highest during extreme low flows, while urbanization is related to lower water temperature anomalies during extreme low flows. 3) Shading changes the composition of urban DOM by preventing photodegradation of the humic pool, however temperature had minimal effect. 4) Urban DOM is source-limited and exhibits exhaustion and dilution effects, with the main predictors of urban DOM during storms being water temperature and antecedent rainfall. The results indicate new understanding of how a range of extreme events alter water temperature and DOM processes within headwater, urban rivers. The need to change urban land use practices to mitigate the impacts of extreme events on urban water quality is highlighted

    The Autobot-WQ: A portable, low-cost autosampler to provide new insight into urban spatio-temporal water quality dynamics

    Get PDF
    Urbanization and the increase in urban land cover are growing concerns associated with numerous negative impacts on surface water quality. Currently, many emerging contaminants are difficult to measure with no field deployable sensors currently available. Hence, discrete grab samples are required for subsequent laboratory analysis. To capture the spatiotemporal variability in pollution pulses, autosamplers can be used, but commercial offerings are both expensive and have a large footprint. This can be problematic in urban environments where there is a high density of point source inputs and risk of vandalism or theft. Here, we present a small and robust low-cost autosampler that is ideally suited for deployment in urban environments. The design is based on “off the shelf” open-source hardware components and software and requires no prior engineering, electronics, or computer programming experience to build. The autosampler uses a small peristaltic pump to enable collection of 14 small volume samples (50 mL) and is housed in a small footprint camera case. To illustrate the technology, we present two use cases for rapid sampling of stormwater pulses of: 1) an urban river channel and 2) green roof runoff. When compared with a commercial autosampler, our device showed comparable results and enabled us to capture temporal dynamics in key water quality parameters (e.g., dissolved organic matter) following rain events in an urban stream. Water quality differences associated with differing green roof design/maintenance regimes (managed and unmanaged vegetation) were captured using the autosampler, highlighting how unmanaged vegetation has a greater potential for mitigating the rapid runoff and peaked pollutant inputs associated with impervious surfaces. These two case studies show that our portable autosampler provides capacity to improve understanding of the impact of urban design and infrastructure on water quality and can lead to the development of more effective mitigation solutions. Finally, we discuss opportunities for further technical refinement of our autosampler and applications to improve environmental monitoring. We propose a holistic monitoring approach to address some of the outstanding challenges in urban areas and enable monitoring to shift from discrete point sources towards characterization of catchment or network scale dynamics

    Geospatial Artificial Intelligence (GeoAI) in the Integrated Hydrological and Fluvial Systems Modeling: Review of Current Applications and Trends

    Get PDF
    This paper reviews the current GeoAI and machine learning applications in hydrological and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial and non-spatial data collected with the new automatic technologies. The fast development of GeoAI provides multiple methods and techniques, although it also makes comparisons between different methods challenging. Overall, selecting a particular GeoAI method depends on the application's objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling, computational efficiency, integration of multiple data sources, high accurate prediction capability, and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI models is the adequate model setting and low physical interpretability, explainability, and model generalization. The most recent research on hydrological GeoAI has focused on integrating the physical-based models' principles with the GeoAI methods and on the progress towards autonomous prediction and forecasting systems

    Subarctic catchment water storage and carbon cycling – Leading the way for future studies using integrated datasets at Pallas, Finland

    Get PDF
    Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.Peer reviewe

    Hydrology under change: Long-term annual and seasonal changes in small agricultural catchments in Norway

    No full text
    In agricultural catchments, hydrological processes are highly linked to particle and nutrient loss and can lead to a degradation of the ecological status of the water. Global warming and land use changes influence the hydrological regime. This effect is especially strong in cold regions. In this study, we used long-term hydrological monitoring data (22–26 years) from small agricultural catchments in Norway. We applied a Mann–Kendall trend and wavelet coherence analysis to detect annual and seasonal changes and to evaluate the coupling between runoff, climate, and water sources. The trend analysis showed a significant increase in the annual and seasonal mean air temperature. In all sites, hydrological changes were more difficult to detect. Discharge increased in autumn and winter, but this trend did not hold for all catchments. We found a strong coherence between discharge and precipitation, between discharge and snow water equivalent and discharge and soil water storage capacity. We detected different hydrological regimes of rain and snow-dominated catchments. The catchments responded differently to changes due to their location and inherent characteristics. Our results highlight the importance of studying local annual and seasonal changes in hydrological regimes to understand the effect of climate and the importance for site-specific management plans

    Hydrology under change: Long-term annual and seasonal changes in small agricultural catchments in Norway

    Get PDF
    In agricultural catchments, hydrological processes are highly linked to particle and nutrient loss and can lead to a degradation of the ecological status of the water. Global warming and land use changes influence the hydrological regime. This effect is especially strong in cold regions. In this study, we used long-term hydrological monitoring data (22–26 years) from small agricultural catchments in Norway. We applied a Mann–Kendall trend and wavelet coherence analysis to detect annual and seasonal changes and to evaluate the coupling between runoff, climate, and water sources. The trend analysis showed a significant increase in the annual and seasonal mean air temperature. In all sites, hydrological changes were more difficult to detect. Discharge increased in autumn and winter, but this trend did not hold for all catchments. We found a strong coherence between discharge and precipitation, between discharge and snow water equivalent and discharge and soil water storage capacity. We detected different hydrological regimes of rain and snow-dominated catchments. The catchments responded differently to changes due to their location and inherent characteristics. Our results highlight the importance of studying local annual and seasonal changes in hydrological regimes to understand the effect of climate and the importance for site-specific management plans.publishedVersio

    Hydrology under change: Long-term annual and seasonal changes in small agricultural catchments in Norway

    No full text
    In agricultural catchments, hydrological processes are highly linked to particle and nutrient loss and can lead to a degradation of the ecological status of the water. Global warming and land use changes influence the hydrological regime. This effect is especially strong in cold regions. In this study, we used long-term hydrological monitoring data (22–26 years) from small agricultural catchments in Norway. We applied a Mann–Kendall trend and wavelet coherence analysis to detect annual and seasonal changes and to evaluate the coupling between runoff, climate, and water sources. The trend analysis showed a significant increase in the annual and seasonal mean air temperature. In all sites, hydrological changes were more difficult to detect. Discharge increased in autumn and winter, but this trend did not hold for all catchments. We found a strong coherence between discharge and precipitation, between discharge and snow water equivalent and discharge and soil water storage capacity. We detected different hydrological regimes of rain and snow-dominated catchments. The catchments responded differently to changes due to their location and inherent characteristics. Our results highlight the importance of studying local annual and seasonal changes in hydrological regimes to understand the effect of climate and the importance for site-specific management plans
    corecore